TA的每日心情 | 开心 昨天 06:36 |
---|
签到天数: 15 天 [LV.4]偶尔看看III
管理员
- 积分
- 1308
|
- #include <iostream>
- #include <vector>
- #include <algorithm>
- #include <random>
- // 定义染色体结构体
- struct Chromosome {
- std::vector<int> genes;
- int fitness;
- Chromosome(int size) : genes(size), fitness(0) {
- std::random采用device rd;
- std::mt19937 gen(rd());
- std::uniform采用int采用distribution<> dis(0, 1);
- for (int& gene : genes) {
- gene = dis(gen);
- }
- }
- };
- // 定义比较函数,用于选择操作
- bool compare(Chromosome& c1, Chromosome& c2) {
- return c1.fitness > c2.fitness;
- }
- // 计算适应度函数
- int calculateFitness(const std::vector<Chromosome>& population) {
- int sum = 0;
- for (const Chromosome& c : population) {
- // 在这里根据具体的问题定义适应度函数
- // 这里只是作为示例,假设适应度函数为基因中1的个数
- int fitness = std::count采用if(c.genes.begin(), c.genes.end(), [](int g) { return g == 1; });
- sum += fitness;
- c.fitness = fitness;
- }
- return sum;
- }
- // 选择操作
- std::vector<Chromosome> selection(const std::vector<Chromosome>& population, int size) {
- std::vector<Chromosome> selected;
- std::random采用device rd;
- std::mt19937 gen(rd());
- std::uniform采用int采用distribution<> dis(0, population.size() - 1);
- while (selected.size() < size) {
- int idx1 = dis(gen);
- int idx2 = dis(gen);
- Chromosome c1 = population[idx1];
- Chromosome c2 = population[idx2];
- // 使用比较函数进行选择
- if (compare(c1, c2)) {
- selected.push采用back(c1);
- } else {
- selected.push采用back(c2);
- }
- }
- return selected;
- }
- // 交叉操作
- void crossover(const std::vector<Chromosome>& parents, std::vector<Chromosome>& offspring) {
- std::random采用device rd;
- std::mt19937 gen(rd());
- std::uniform采用int采用distribution<> dis(1, parents[0].genes.size() - 2);
- for (size采用t i = 0; i < parents.size() / 2; i++) {
- size采用t idx = i * 2;
- Chromosome parent1 = parents[idx];
- Chromosome parent2 = parents[idx + 1];
- Chromosome child1, child2;
- size采用t crossoverPoint = dis(gen);
- std::vector<int> genes1(parent1.genes.begin(), parent1.genes.begin() + crossoverPoint);
- std::vector<int> genes2(parent2.genes.begin() + crossoverPoint, parent2.genes.end());
- child1.genes = genes1;
- child1.genes.insert(child1.genes.end(), genes2.begin(), genes2.end());
- child1.fitness = calculateFitness({ parent1, parent2 }) / 2;
- genes1 = parent2.genes.begin(), parent2.genes.begin() + crossoverPoint;
- genes2 = parent1.genes.begin() + crossoverPoint, parent1.genes.end();
- child2.genes = genes1;
- child2.genes.insert(child2.genes.end(), genes2.begin(), genes2.end());
- child2.fitness = calculateFitness({ parent1, parent2 }) / 2;
- offspring.push采用back(child1);
- offspring.push采用back(child2);
- }
- }
- // 变异操作
- void mutation(std::vector<Chromosome>& population, double mutationRate) {
- std::random采用device rd;
- std::mt19937 gen(rd());
- std::uniform采用int采用distribution<> dis(0, 1);
- for (Chromosome& c : population) {
- for (int& gene : c.genes) {
- if (dis(gen) < mutationRate) {
- gene = 1 - gene;
- }
- }
- }
- }
- // 主函数
- int main() {
- const int populationSize = 50;
- const int generationCount = 100;
- const double mutationRate = 0.01;
- const int tournamentSize = 4;
- const int elitismCount = 2;
- std::vector<Chromosome> population(populationSize);
- // 初始化种群
- for (Chromosome& c : population) {
- c = Chromosome(c.genes.size());
- }
- // 进行遗传算法优化
- for (int generation = 0; generation < generationCount; generation++) {
- // 计算种群的适应度
- int sumFitness = calculateFitness(population);
- // 选择操作
- std::vector<Chromosome> selected = selection(population, populationSize);
- // 交叉操作
- std::vector<Chromosome> offspring;
- crossover(selected, offspring);
- // 变异操作
- mutation(offspring, mutationRate);
- // 选择精英个体
- std::vector<Chromosome> elite(population.begin(), population.begin() + elitismCount);
- std::sort(population.begin() + elitismCount, population.end(), compare);
- std::vector<Chromosome> newPopulation(elite.begin(), elite.end());
- std::sort(offspring.begin(), offspring.end(), compare);
- std::copy采用n(offspring.begin(), populationSize - elitismCount, std::back采用inserter(newPopulation));
- population = newPopulation;
- }
- // 输出最优解
- std::cout << "Best solution found: " << std::endl;
- std::cout << "Fitness: " << population[0].fitness << std::endl;
- std::cout << "Genes: ";
- for (int gene : population[0].genes) {
- std::cout << gene << " ";
- }
- std::cout << std::endl;
- return 0;
- }
复制代码 |
|